Crown Ether Complexes of HPCl_{6}

Zin-Min Tun, Matthew J. Panzner, Vincenzo Scionti, Douglas Medvetz, Chrys Wesdemiotis, Wiley J. Youngs, and Claire Tessier*

Department of Chemistry, University of Akron, Akron, Ohio 44325-3601, United States
Received July 21, 2010; E-mail: tessier@uakron.edu

Abstract

The reactions of $\mathrm{HCl}, \mathrm{PCl}_{5}$, and a crown ether (12-crown-4 or 18-crown-6) in CHCl_{3} under anaerobic conditions give complexes of the superacid $\mathrm{HPCl}_{6}:\left[\mathrm{H}\left(12\right.\right.$-crown-4)] $\left[\mathrm{PCl}_{6}\right]$ and $\left[\mathrm{H}(18 \text {-crown- } 6)_{2}\right]\left[\mathrm{PCl}_{6}\right]$. The crystal structures indicate that the proton lies roughly in the center of the 12-crown-4 molecule in $\left[\mathrm{H}\left(12\right.\right.$-crown-4)][PCl_{6}] whereas it lies between two oxygen atoms of two different 18 -crown-6 molecules in $\left[\mathrm{H}(18 \text {-crown-6) })_{2}\right]\left[\mathrm{PCl}_{6}\right]$.

Superacids are Brønsted acids that are more acidic than 100% sulfuric acid $\left(\mathrm{H}_{0}<-12\right) .{ }^{1}$ They exist in nonaqueous, weakly basic solvents. Superacids have found uses in important organic transformations such as hydrocarbon cracking and isomerization as well as Friedel-Crafts chemistry, and they appear to be involved in some cationic polymerization processes. ${ }^{1,2}$

An important class of superacids are the conjugate BrønstedLewis superacids. ${ }^{1}$ These acids are generated from the reaction of a Brønsted acid HX ($\mathrm{X}=$ halide) and a Lewis acid MX ${ }_{m}$, and the fluorinated systems are the most studied. Conceptionally, such superacids could be viewed as in eq 1 where the Lewis acid MX_{m} converts X^{-}into the more weakly coordinating anion MX_{m+1}^{-}, thereby increasing the Brønsted acidity of the system.

$$
\begin{equation*}
\mathrm{HX}+\mathrm{MX}_{m} \rightarrow\left[\mathrm{H}^{+}\right]\left[\mathrm{MX}_{m+1}{ }^{-}\right] \tag{1}
\end{equation*}
$$

However, eq 1 is an oversimplification. ${ }^{1,3,4}$ Species other than H^{+} and MX_{m+1}^{-}usually also form from HX and MX_{m}, and the species formed are dependent on the stoichiometry.
Phosphazene polymers have many useful properties but are seldom used industrially. ${ }^{5}$ A major problem in phosphazene chemistry concerns the difficulties and irreprodicibilities encountered in the synthesis and handling of the parent $\left[\mathrm{PCl}_{2} \mathrm{~N}\right]_{n}$ polymer, from which most other polyphosphazenes are prepared. A number of the problems seem to involve unspecified Brønsted acids. ${ }^{6-8}$ On the basis of our work on the reactions of Lewis acids and $\left[\mathrm{PCl}_{2} \mathrm{~N}\right]_{3},{ }^{9}$ we suspect that at least some of these issues may be due to the presence of a strong acid or a superacid that is generated from the hydrolytically unstable, Lewis acid PCl_{5} and $\mathrm{HCl} . \mathrm{PCl}_{5}$ is a reagent, catalyst, or initiator in all syntheses of $\left[\mathrm{PCl}_{2} \mathrm{~N}\right]_{n}$ and thereby could be an impurity. Therefore, as suggested by eq 1 , HPCl_{6} or a related species could be generated from the reaction of PCl_{5} and HCl , the latter of which is generated as a byproduct during some syntheses of chlorophosphazenes or from hydrolysis of $\mathrm{P}-\mathrm{Cl}$ bonds. The effect of PCl_{5} and HCl separately on the ring-opening polymerization synthesis of $\left[\mathrm{PCl}_{2} \mathrm{~N}\right]_{n}$ has been considered, but their combined action has not. ${ }^{10}$
HPCl_{6} salts of a few nitrogen bases are known. ${ }^{11}$ Therefore, it appears that HPCl_{6} is at least a strong acid. Herein, we describe some of our efforts to characterize the acidic compounds generated from the combination of HCl and PCl_{5} in the presence of bases
that are weaker than those already examined. Though there are very few references to HPCl_{6} per se, a search of the Chemical Abstracts database showed that the combination of the reagents HCl and PCl_{5} has been used in about 590 one-step reactions, most of which are syntheses of organic molecules. Therefore, an understanding of the chemistry $\mathrm{HCl} / \mathrm{PCl}_{5}$ has application to areas other than phosphazene chemistry.

Attempts to isolate HPCl_{6} from the reactions of gaseous HCl and PCl_{5} in hydrocarbon and chlorocarbon solvents were unsuccessful. The work of Andrianov and co-workers provided some inspiration. ${ }^{10}$ They noted the polymer $\left[\mathrm{PCl}_{2} \mathrm{~N}\right]_{n}$ was stable in air for over four years if it was stored in diglyme. They suggested that diglyme forms a complex with the acidic impurities that form in $\left[\mathrm{PCl}_{2} \mathrm{~N}\right]_{n}$ on prolonged storage. Therefore, the $\mathrm{HCl} / \mathrm{PCl}_{5}$ system was examined in the presence of ethers, in particular crown ethers.

Equations 2 and 3 show the reactions of $\mathrm{HCl}, \mathrm{PCl}_{5}$, and two different crown ethers in CHCl_{3}.

$$
\begin{align*}
& \mathrm{HCl}+\mathrm{PCl}_{5}+12 \text {-crown- } 4 \rightarrow[\mathrm{H}(12 \text {-crown- } 4)]\left[\mathrm{PCl}_{6}\right] \tag{2}\\
& \mathrm{HCl}+\mathrm{PCl}_{5}+2(18 \text {-crown- } 6) \rightarrow\left[\mathrm{H}(18 \text {-crown- } 6)_{2}\right]\left[\mathrm{PCl}_{6}\right] \tag{3}
\end{align*}
$$

The reaction with 12 -crown- 4 occurs in a 1:1:1 ratio whereas that with 18 -crown- 6 occurs in a 1:1:2 ratio, irrespective of the initial stoichiometry of the reagents. Complexes $\mathbf{1}$ and $\mathbf{2}$ were isolated as colorless crystals.

Complexes $\mathbf{1}$ and $\mathbf{2}$ are air-sensitive and have limited thermal stability. MS data of freshly prepared $\mathbf{1}$ and $\mathbf{2}$ show the $\mathrm{H}\left[\mathrm{OCH}_{2} \mathrm{CH}_{2}\right]_{n}{ }^{+}$cation ($n=4$ or 6 , respectively) and lower molercular weight fragments. In addition, higher molecular weight $\left[\mathrm{OCH}_{2} \mathrm{CH}_{2}\right]_{n}$ and $\mathrm{H}\left[\mathrm{OCH}_{2} \mathrm{CH}_{2}\right]_{n} \mathrm{H}$ oligomers, indicative of degradation, are observed for freshly prepared 1. Such oligomers were observed in MS studies of the free crown ethers. ${ }^{12}$ After storage in an argon-filled glovebox for 3 days for $\mathbf{1}$ and 1-2 weeks for 2, both degrade to form colorless oils. From NMR and mass spectral data, the oils largely consist of oligomers of formula $\left[\mathrm{OCH}_{2} \mathrm{CH}_{2}\right]_{n}$ and $\mathrm{H}\left[\mathrm{OCH}_{2} \mathrm{CH}_{2}\right]_{n} \mathrm{H}$. In air, 2 degrades to give crystals of the known $\left[\mathrm{H}_{3} \mathrm{O}(18\right.$-crown- 6$\left.)\right]\left[\mathrm{H}_{5} \mathrm{O}_{2}\right][\mathrm{Cl}]_{2}{ }^{13}$

The crystal structures of $\mathbf{1}$ and $\mathbf{2}$ have been obtained, and thermal ellipsoid plots of the cationic portions are shown in Figures 1 and 2, respectively. Disorder of an oxygen and two carbon atoms ($\mathrm{O}(5)$, $\mathrm{C}(8)$, and $\mathrm{C}(9)$) in one of the two 18 -crown- 6 molecules of $\mathbf{2}$ was observed. In both $\mathbf{1}$ and $\mathbf{2}$, the proton was found and it is twocoordinate. The proton of $\mathbf{1}$ lies in the center of the 12 -crown- 4 molecule, roughly midway between two oxygen atoms separated by $2.446 \AA$ (Figure 1). The short $\mathrm{O}-\mathrm{O}$ distance in $\mathbf{1}$ is consistent with a strong $\mathrm{O}-\mathrm{H}-\mathrm{O}$ hydrogen bond. ${ }^{14}$ The proton of 2 is somewhat closer to one of the two oxygen atoms that are involved in a shorter intermolecular $\mathrm{O}-\mathrm{H}-\mathrm{O}$ hydrogen bond of $2.423 \AA$ between two different 18 -crown-6 molecules (Figure 2).

Figure 1. Thermal ellipsoid plot of the cation of $\mathbf{1}$ with ellipsoids at 50% and showing the position of the acidic hydrogen (unlabeled) in the $\mathrm{O}-\mathrm{H}-\mathrm{O}$ hydrogen bond ($\mathrm{O}--\mathrm{O}=2.446 \AA$). Carbon atoms are unlabeled and other hydrogen atoms are omitted for clarity.

Figure 2. Thermal ellipsoid plot of the cation of $\mathbf{2}$ with ellipsoids at 50% and showing the position of the hydrogen atom (unlabeled) in the $\mathrm{O}-\mathrm{H}-\mathrm{O}$ hydrogen bond $(\mathrm{O}--\mathrm{O}=2.423 \AA)$. Carbon atoms are unlabeled and other hydrogen atoms are omitted for clarity. $\mathrm{O}(5), \mathrm{C}(8)$, and $\mathrm{C}(9)$ are slightly disordered, and only the predominant form is shown.

The structures of $\mathbf{1}$ and $\mathbf{2}$ show differences from the structures of the respective free or nearly free crown ethers. The crystal structure of free 12 -crown-4, a liquid at room temperature, was not found. However, in structures where 12 -crown-4 is involved only in weak noncovalent interactions, none of the oxygen atoms point toward the center of the ring. ${ }^{15}$ In $\mathbf{2}$, one end of each of the two 18 -crown- 6 molecules is cupped toward the proton in a conformation that is very different than that in the free 18 -crown$6 .{ }^{16}$ Some lengthening of the $\mathrm{O}-\mathrm{C}$ bonds that involve the oxygen atoms bound to the proton relative to the other $\mathrm{O}-\mathrm{C}$ bonds is observed in both $\mathbf{1}$ and $\mathbf{2}$.

Superacid solutions often are a complex mixture of several species. ${ }^{1}$ The NMR spectra of $\mathbf{1}$ and $\mathbf{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ are in agreement with this expectation. The ${ }^{1} \mathrm{H}$ NMR spectra for the acidic protons show pairs of resonances at 6.05 and 5.99 for $\mathbf{1}$ and 6.00 and 5.96 ppm for 2, respectively. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra show resonances for the CH_{2} groups of the two crown ethers at 3.7 and 70.7 ppm , respectively for both compounds. Most of the resonances in the ${ }^{31} \mathrm{P}$ spectra of $\mathbf{1}$ and $\mathbf{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ can be assigned to known species. ${ }^{17}$ The ${ }^{31} \mathrm{P}$ spectrum of $\mathbf{1}$ showed signals at $-80.7\left(\mathrm{PCl}_{5}\right)$, 85.1 and $92.4\left(\mathrm{PCl}_{4}{ }^{+}\right)$, and $220.1\left(\mathrm{PCl}_{3}\right) \mathrm{ppm}$. The ${ }^{31} \mathrm{P}$ spectrum of 2 at $30{ }^{\circ} \mathrm{C}$ showed resonances at $-296.9\left(\mathrm{PCl}_{6}{ }^{-}\right),-80.7\left(\mathrm{PCl}_{5}\right)$, $5.2\left(\mathrm{OPCl}_{3}\right), 85.1\left(\mathrm{PCl}_{4}^{+} \mathrm{Cl}^{-}\right), 92.4\left(\mathrm{PCl}_{4}{ }^{+} \mathrm{PCl}_{6}^{-}\right)$, and $220.1\left(\mathrm{PCl}_{3}\right)$
ppm. Apparently, $\mathrm{PCl}_{6}{ }^{-}$dissociates to PCl_{5} and Cl^{-}and PCl_{5} is known to be a source of $\mathrm{PCl}_{4}{ }^{+}, \mathrm{PCl}_{6}{ }^{-}, \mathrm{Cl}^{-}$, and $\mathrm{PCl}_{3}{ }^{18}$ Variabletemperature ${ }^{31} \mathrm{P}$ NMR spectra of $\mathbf{2}$ show that as the temperature is lowered to $-20^{\circ} \mathrm{C}$, the resonances assigned to PCl_{5} and $\mathrm{PCl}_{6}{ }^{-}$ sharpen considerably, consistent with an equilibrium between $\mathrm{PCl}_{6}{ }^{-}$, PCl_{5}, and Cl^{-}.

In summary, we have synthesized and characterized two crown ether complexes of the little-known superacid HPCl_{6}. The coordination chemistry of the proton is a topic of recent interest. ${ }^{19}$ Though numerous crown-ether complexes of oxonium ions have been isolated and characterized, ${ }^{20}$ complexes $\mathbf{1}$ and $\mathbf{2}$ appear to be the first crystallographically characterized crown-ether complexes of otherwise uncomplexed protons. In a separate paper we will describe the reactions of HPCl_{6} and chlorophosphazenes.

Acknowledgment. This material is based upon work supported in part by the National Science Foundation (NSF) under Grants CHE-0316944 and CHE-0616601. Instruments used in this work were obtained via NSF Grants CHE-9977144 and DMR-0821313. We thank the University of Akron and the Ohio Board of Regents for additional support; Stephanie Bilinovich for help with the crystallographic data; and Drs. Venkat Dudipala, Amy Heston (Walsh University), and John Rapko (St. Louis College of Pharmacy) for helpful discussions.

Supporting Information Available: Detailed synthetic and other experimental procedures and crystallographic and spectral data of \mathbf{I} and $\mathbf{2}$ can be found in the Supporting Information. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) Molnar, A.; Olah, G. A.; Surya Prakash, G. K.; Sommer, J. Superacids, 2nd ed.; Wiley: New York, 2009; Chapters 1-2.
(2) Some examples: (a) Kennedy, J. P. J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 2285-2293. (b) Kolishetti, N.; Faust, R. Macromolecules 2008, 41, 3842-3851. (c) Crivello, J. V. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 1825-1835.
(3) (a) Fãrcaşiu, D. Acc. Chem. Res. 1982, 15, 46-51. (b) Snider, B. B. Acc. Chem. Res. 1980, 13, 426-432.
(4) (a) Gillespie, R. J.; Liang, J. J. Am. Chem. Soc. 1988, 110, 6053-6057. (b) Culmann, J.-C.; Fauconet, M.; Jost, R.; Sommer, J. New J. Chem. 1999, 23, 863-867.
(5) Allcock, H. R. Chemistry and Applications of Polyphosphazenes; WileyInterscience: New York, 2003; Chapters 1-2.
(6) (a) Liu, H. Q.; Stannett, V. T. Macromolecules 1990, 23, 140-144. (b) Sayed, M. B. Internet J. Chem. 2002, 5, 6 Paper No.
(7) (a) Emsley, J.; Udy, P. B. Polymer 1972, 13, 593-4. (b) Sulkowski, W. W. In Phosphazenes: A Worldwide Insight; Gleria, M., De Jaeger, R., Eds.; Nova Science: New York, 2004; Chapter 4.
(8) Andrianov, A. K.; Chen, J.; LeGolvan, M. P. Macromolecules 2004, 37, 414-420.
(9) (a) Heston, A. J.; Panzner, M.; Youngs, W. J.; Tessier, C. A. Phosphorus, Sulfur Silicon Relat. Elem. 2004, 179, 831-837. (b) Heston, A. J.; Panzner, M.; Youngs, W. J.; Tessier, C. A. Inorg. Chem. 2005, 44, 6518-6520.
(10) Allcock, H. R.; Gardner, J. E.; Smeltz, K. E. Macromolecules 1975, 8, 36-42.
(11) Examples of compounds of general form $[\mathrm{H}$ (base) $]\left[\mathrm{PCl}_{6}\right]$ where "base" is a nitrogen containing compound: (a) Knachel, H. C.; Owens, S. D.; Lawrence, S. H.; Dolan, M. E.; Kerby, M. C.; Salupo, T. A. Inorg. Chem. 1986, 25, 4606-4608. (b) Rozinov, V. G.; Kolbina, V. E.; Dmitrichenko, M. Yu. Russ. J. Gen. Chem. 1997, 67, 483-484. (c) Kaupp, G.; Boy, J.; Schmeyers, J. J. Prakt. Chem./Chem.-Zeitung 1998, 340, 346-355. (d) Dillon, K. B.; Khabbass, N. D. A. H.; Ludman, C. J. Polyhedron 1989, 8 , 2623-2626.
(12) (a) Selby, T. L.; Wesdemiotis, C.; Lattimer, R. L. J. Am. Soc. Mass Spectrom. 1994, 5, 1081-1092. (b) Lattimer, R. L. J. Am. Soc. Mass Spectrom. 1994, 5, 1072-1080.
(13) Atwood, J. L.; Bott, S. G.; Coleman, A. W.; Robinson, K. D.; Whetstone, S. B.; Means, C. M. J. Am. Chem. Soc. 1987, 109, 8100-8101.
(14) (a) Emsley, J. Chem. Soc. Rev. 1980, 9, 91-124. (b) Perrin, C. L.; Nielson, J. B. Annu. Rev. Phys. Chem. 1997, 48, 511-544. (c) Gilli, P.; Pretto, L.; Bertolasi, V.; Gilli, G. Acc. Chem. Res. 2009, 42, 33-44.
(15) (a) Fonari, M. S.; Ganinb, E. V.; Wang, W.-J. Acta Crystallogr. 2005, C61, o431-o433. (b) Babaian, E. A.; Huff, M.; Tibbals, F. A.; Hrncir, D. C. J. Chem. Soc., Chem. Commun. 1990, 306-307.
(16) Dunitz, J. D.; Seiler, P. Acta Crystallogr. 1974, B30, 2739-2741.
(17) (a) Kleeman, S. G.; Fluck, E.; Tebby, J. C. In CRC Handbook of Phosphorus31 Nuclear Magnetic Resonance Data; Tebby, J. C., Ed.; CRC: Boca Raton, FL, 1991; p 54. (b) Germa, H.; Navech, J. In CRC Handbook of Phosphorus-

31 Nuclear Magnetic Resonance Data; Tebby, J. C., Ed.; CRC: Boca Raton, FL, 1991; p 185. (c) Brazier, J. F.; Lamandé, L.; Wolf, R. In CRC Handbook of Phosphorus-31 Nuclear Magnetic Resonance Data; Tebby, J. C., Ed.; CRC: Boca Raton, FL, 1991; p 508. (d) Lamandé, L.; Koenig, M.; Dillon, K. In CRC Handbook of Phosphorus-31 Nuclear Magnetic Resonance Data; Tebby, J. C., Ed.; CRC: Boca Raton, FL, 1991; p 556.
(18) (a) Suter, R. W.; Knachel, H. C.; Petro, V. P.; Howatson, J. H.; Shore, S. G. J. Am. Chem. Soc. 1973, 95, 1474-1479. (b) Dillon, K. B.; Lynch,
R. J.; Reeve, R. N.; Waddington, T. C. J. Inorg. Nucl. Chem. 1974, 36, 815-817. (c) Wiberg, N. Hollerman, A. F.; Wiberg, E. Inorganic Chemistry; Academic: New York, 2001; pp 705 and 707.
(19) Chambron, J.-C.; Meyer, M. Chem. Soc. Rev. 2009, 38, 1663-1673.
(20) Junk, P. C. New J. Chem. 2008, 762-773, and references cited therein.

JA1064697

